


Wärmepumpen

Produktinformationen

- Grundlagen
- Außenmodule
- Interface
- Systemgestaltung

EINFACH WARME PUMPEN

Markt

Wärmequellen

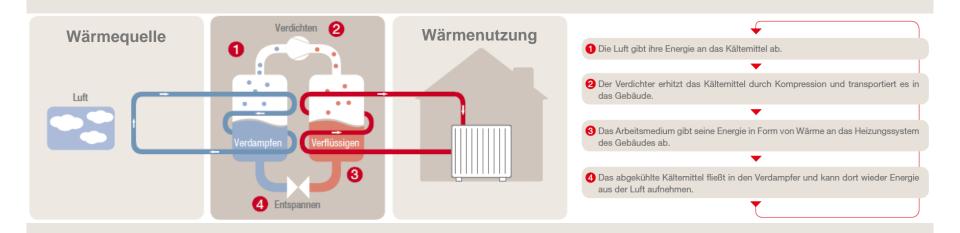
// Vor- und Nachteile der jeweiligen Wärmequellen

Mitsubishi Electric bietet ausschließlich Luftwärmepumpen an



- Genehmigungsverfahren notwendig
- · Quellenerschließung fordert hohe Investition

- Verfügbarkeit der Quelle
- Einfache Erschließung


// Ihr Nutzen: Mit Ecodan nutzen sie die "einfachste" Energie!

Markt

Funktionsprinzip

- // Ecodan macht die in der Umgebungsluft gespeicherte Energie nutzbar.
- // Das Arbeitsmedium Kältemittel R410A entzieht der Luft Energie und gibt sie an das Heizungssystem ab.
- // Die Veränderung des Zustands des Arbeitsmediums erlaubt diesen faszinierenden Vorgang.

// Ihr Nutzen: Mit Ecodan setzen Sie auf Jahrzehnte an Kompressor-Know-How.

Markt

Faustregeln zur Auslegung eines Heizsystems

// Je niedriger die Vorlauftemperatur,

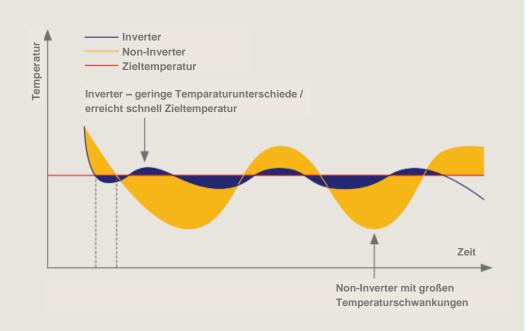
desto höher die Leistungszahl

// Je höher die Wärmequellentemperatur,

desto größer die Wärmeleistung


// Je **kleiner** die <u>Differenz</u> zwischen <u>Wärmequellentemperatur</u> und der <u>Heizungsvorlauftemperatur</u>, desto **besser** wird die Leistungszahl

Die Flächenheizung (Fußboden- oder / und Wandheizung) ist bei Wärmepumpenanlagen besonders zu empfehlen, da sie mit niedrigen Vorlauf- und Rücklauftemperaturen auskommt und so die Wärmepumpe eine optimale Jahresarbeitszahl erreicht.


Außenmodule

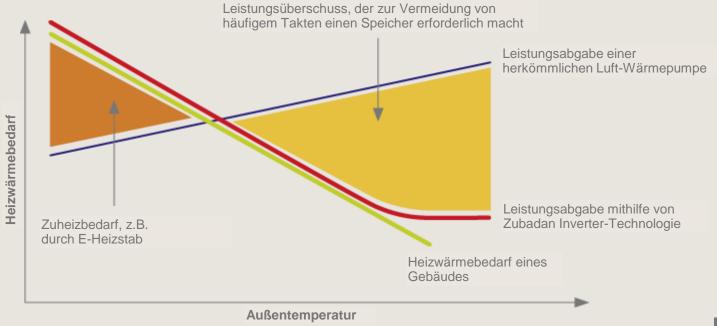
Inverter-Technologie

Leistung auf den Punkt gebracht

- // Durch den Einsatz von Kompressoren der neuesten Generation verfügen Ecodan Luft-/ Wasser-Wärmepumpen über einen im Markt einzigartigen technologischen Vorsprung.
- // Aktuell kommen zwei unterschiedliche Systeme in den Ecodan Außeneinheiten zum Einsatz: Power Inverter und Zubadan Inverter.
- // Beide gewährleisten ein schnelles Erreichen der erforderlichen Temperatur – für einzigartig bedarfsgerechtes, effizientes Heizen.

Wirkungsprinzip Inverter

// Ihr Nutzen: Effizienter Betrieb und hoher Wärmekomfort



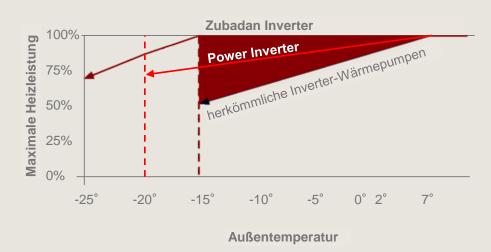
Außenmodule

Zubadan Inverter

Die Zubadan Inverter-Technologie sorgt für eine bedarfsgerechte Leistungsabgabe. So können ineffizientes Zuheizen und Leistungsüberschüsse bzw. Takten im gesamten Außentemperaturspektrum verhindert werden.

for a greener tomorrow eco

Außenmodule



Zubadan oder Power Inverter

Die patentierten Zubadan Inverter stellen das aktuelle Optimum in der Luft-/Wasser-Wärmepumpentechnologie dar. Damit sind sie erste Wahl, speziell für die Modernisierung.

Die Vorteile im Überblick

- // Extreme Zuverlässigkeit und effiziente Spitzenleistung über den gesamten Einsatzbereich hinweg:
 - // Hohe Wirtschaftlichkeit auch bei extremer Kälte
 - // Volle Heizleistung bis -15 ° C Außentemperatur
- // Besonders hohe Betriebssicherheit durch erweiterten Einsatzbereich bis -25 ° C und beschleunigtes Abtau-Verhalten
- // Dank hoher Vorlauftemperaturen (60 ° C) auch optimal für den Einsatz im sanierten Altbau

// Ihr Nutzen: Alleinstellung im Markt bei monovalenten Heizungslösungen im Bestand

Außenmodule

Inverter-Technologie

// Power Inverter

Vorlauf-Temperatur max. 60° C

Einsatzgrenzen - 20 bis +35° C

// Zubadan Inverter

Vorlauf-Temperatur max. 60° C

Einsatzgrenzen - 25 bis +35° C

Volle Heizleistung bis – 15° C

// Ihr Nutzen: Optimum für Sanierungsanwendungen

Wärmepumpen

Außenmodule

for a greener tomorrow Changes

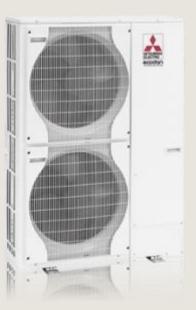
Außenmodule

Inverter-Technologie

// Power Inverter

Split: PUHZ-SW

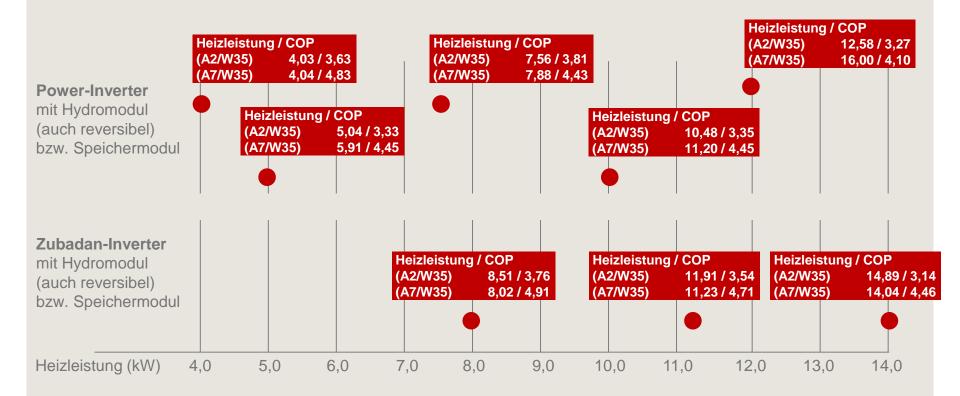
Monoblock: PUHZ-W



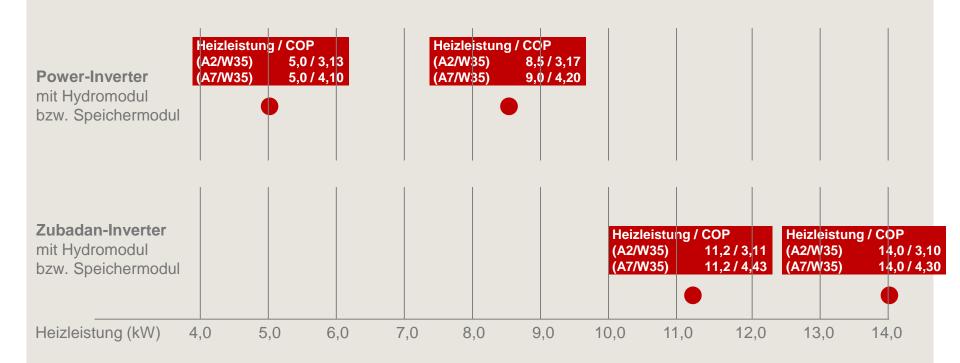
// Zubadan Inverter

Split: PUHZ-SHW

Monoblock: PUHZ-HW


// Ihr Nutzen: Für jede Anwendung die richtige Lösung

Auf einen Blick / Split-Wärmepumpen



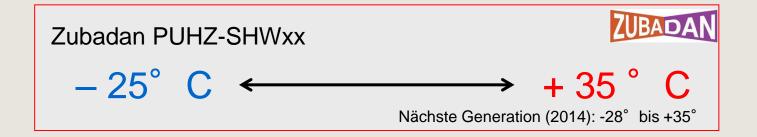
// Ihr Nutzen: Optimale Kombination im Hinblick auf die Energieeffizienz

Auf einen Blick / Monoblock-Wärmepumpen

// Ihr Nutzen: Optimale Kombination im Hinblick auf die Energieeffizienz


Performance

AtW Unit	Cap new	COP new	COP +%
PUHZ-SW40VHA	4,03	3,63	23,89%
PUHZ-SW50VHA	5,04	3,33	33,20%
PUHZ-SW75VHA	7,56	3,81	30,48%
PUHZ-SW100VHA	10,48	3,35	15,52%
PUHZ-SW100YHA	10,48	3,35	15,52%
PUHZ-SW120YHA	12,58	3,27	21,11%
PUHZ-SW120YHA	12,58	3,27	17,63%
PUHZ-SHW80VHA	8,51	3,76	16,05%
PUHZ-SHW112YHA	11,91	3,54	17,22%
PUHZ-SHW140YHA	14,89	3,14	16,30%


// Ihr Nutzen: Optimale Kombination im Hinblick auf die Energieeffizienz

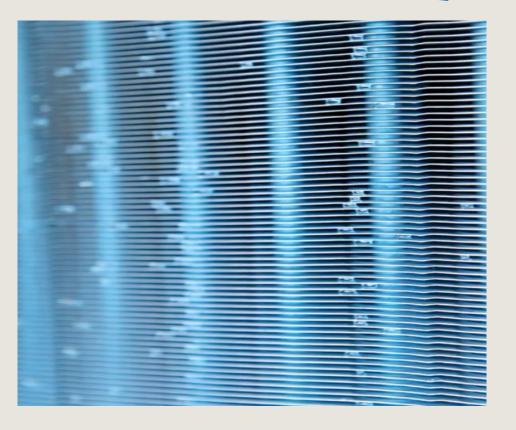
Garantierter Einsatzbereich



// Ihr Nutzen: Optimale Kombination im Hinblick auf die Energieeffizienz

Außenmodule

Power Inverter & Zubadan aus M-ACE



BlueFin Beschichtung als Standard

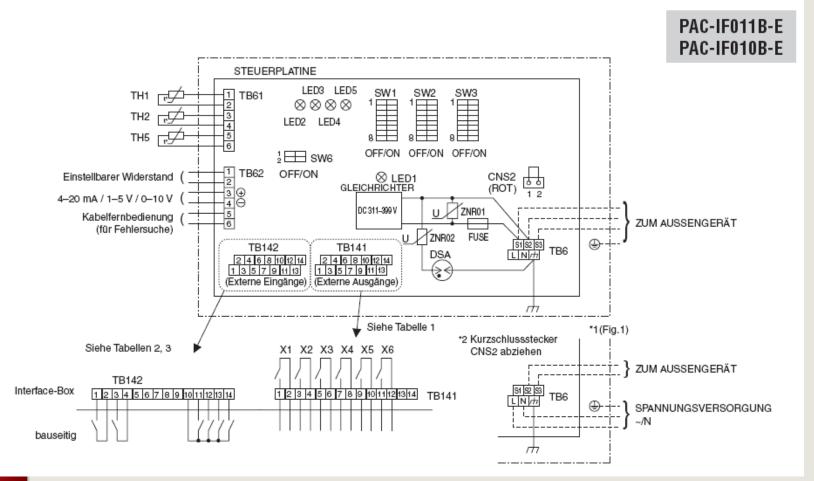
// Verbesserter Korrosionsschutz

// Vermeidung der Verrauhung durch Aluminium-Korrosion

// Ihr Nutzen: Besseres Abtauverhalten

Ansteuerungsplatine

Interfaceplatine PAC-IF010


Interfaceplatine PAC-IF010

Ansteuerungsmöglichkeiten:

Leistungsanforderung durch verschieden Möglichkeiten

- -0-10V
- -1-5V
- -4-20mA
- -0-10kOHM
- -Kontakteingänge (4Bit)

Eingangssignale:

TB142	TB142	TB142	TB142		Schritt der Leistungsregelung						
10-11 (COM-IN5)	10-12 (COM-IN6)	10-13 (COM-IN7)	10-14 (COM-IN8)	Тур А			Тур В			Hinweis	
AUS/OFF	AUS/OFF	AUS/OFF	AUS/OFF	AUS/OFF	Aus	0 %	AUS/OFF	Aus	0 %	Aus	
EIN/ON	AUS/OFF	AUS/OFF	AUS/OFF	EIN/ON	Stufe1	10 %	EIN/ON	Stufe1	10 %		
AUS/OFF	EIN/ON	AUS/OFF	AUS/OFF		Stufe2	20 %		Stufe4	50 %	_ 	
EIN/ON	EIN/ON	AUS/OFF	AUS/OFF		Stufe3	30 %		\uparrow	\uparrow	Betriebs-	
AUS/OFF	AUS/OFF	EIN/ON	AUS/OFF		Stufe4	50 %		Stufe7	100 %	frequenz	
EIN/ON	AUS/OFF	EIN/ON	AUS/OFF		Stufe5	70 %		↑	1	fixiert	
AUS/OFF	EIN/ON	EIN/ON	AUS/OFF		Stufe6	80 %		↑	1]	
EIN/ON	EIN/ON	EIN/ON	AUS/OFF		Stufe7	100 %		↑	1		
AUS/OFF	AUS/OFF	AUS/OFF	EIN/ON		Auto	matik		Auto	matik	Autom. Wahl	
Schaltungsskizze Typ A bauseitig zu erstellen Typ B bauseitig zu erstellen I/F											
4 Bit/8 Einstellungen Schritt AUS – AUTO						0 1 2 3 4		Step1	10 11 12 13 14		
					т	B142			TB142		

Eingangssignale:

Einstellbarer Widerstand (0-10kΩ)	4-20mA	1-5V	0-10V	Kapa	itt für zitäts- ellung	Hinweis
0~100Ω	4~5mA	0~1,25V	0~0,63V	OFF	0%	Stop
510Ω	7mA	1,75V	1,88V	Step1	10%	
1kΩ	9mA	2,25V	3,13V	Step2	20%]
2kΩ	11mA	2,75V	4,38V	Step3	30%	Feste
3,3kΩ	13mA	3,25V	5,63V	Step4	50%	Kapazität (Hz fest)
4,3kΩ	15mA	3,75V	6,88V	Step5	70%	Modus
5,6kΩ	17mA	4,25V	8,13V	Step6	80%	
7,5kΩ	19~20mA	4,75~5V	9,38~10V	Step7	100%	
10kΩ	_	_	_	Auto step		Autoschritt- modus
OPEN (12kΩ~)	_	_	_	OFF	0%	Stop

■ PUHZ-SW75VHA(-BS)

Min: Step1 (0,63 - 1,88V)

Mid:

Step4 (4,38 - 5,63V

Max:

Step7 (9,38 - 10,0V)

	1 0112-3W13V11A(-B3)															
	Water outlet temperature[°C]		2	5	3	5	4	0	4	5	5	0	5	5	6	0
	temp	mbient erature[°c]	Capacity	COP												
		-20	-	-	6.09	1.62	6.07	1.49	6.04	1.37	-	-	-	-	-	-
		-15	-	-	7.20	1.93	7.10	1.74	7.00	1.56	6.62	1.51	-	-	-	-
		-10	8.56	2.72	8.18	2.35	7.99	2.11	7.80	1.88	7.25	1.72	6.69	1.56	-	-
		-7	9.60	3.07	8.96	2.61	8.64	2.33	8.32	2.05	7.66	1.89	7.00	1.71	-	-
	Max	2	10.36	3.30	9.60	2.84	8.94	2.60	8.29	2.37	7.72	2.15	7.14	1.91	6.57	1.65
		7	10.73	4.53	10.22	3.93	9.97	3.54	9.71	3.14	9.49	2.88	9.26	2.59	9.03	2.26
)		12	12.72	5.20	12.02	4.62	11.67	4.11	11.32	3.59	11.01	3.26	10.69	2.90	10.38	2.38
		15	13.86	5.51	12.95	4.96	12.50	4.38	12.04	3.80	11.68	3.43	11.31	3.02	10.95	2.50
		20	14.35	5.76	13.45	5.17	13.00	4.56	12.55	3.95	12.20	3.56	11.85	3.15	11.50	2.56
		-20	-	-	6.09	1.62	6.07	1.49	6.04	1.37	-	-	-	-	-	-
		-15	-	-	7.00	1.97	7.00	1.76	7.00	1.56	6.62	1.51	-	-	-	-
		-10	7.00	2.91	7.00	2.47	7.00	2.20	7.00	1.92	7.00	1.76	6.69	1.56	-	-
		-7	7.00	3.51	7.00	2.90	7.00	2.55	7.00	2.20	7.00	1.96	7.00	1.71	-	-
	Nominal	2	7.50	3.97	7.50	3.40	7.50	3.11	7.50	2.83	7.50	2.37	7.14	1.91	6.57	1.65
		7	8.00	5.24	8.00	4.40	8.00	3.90	8.00	3.40	8.00	3.10	8.00	2.77	8.00	2.33
)		12	9.00	6.16	9.00	5.26	9.00	4.54	9.00	3.83	9.00	3.42	9.00	2.97	9.00	2.50
		15	9.65	6.63	9.65	5.70	9.65	4.87	9.65	4.04	9.65	3.59	9.65	3.11	9.65	2.58
		20	10.15	7.03	10.15	6.03	10.15	5.14	10.15	4.25	10.15	3.76	10.15	3.25	10.15	2.68
		-20	-	-	4.87	1.68	4.85	1.54	4.83	1.39	-	-	-	-	-	-
		-15	-	-	5.60	2.09	5.60	1.88	5.60	1.67	5.30	1.57	-	-	-	-
		-10	5.60	3.10	5.60	2.60	5.60	2.30	5.60	1.99	5.60	1.80	5.35	1.58	-	-
		-7	5.60	3.54	5.60	2.94	5.60	2.59	5.60	2.24	5.60	2.01	5.60	1.77	-	-
	Mid	2	6.00	4.23	6.00	3.55	6.00	3.21	6.00	2.87	6.00	2.54	5.71	2.18	5.26	1.71
		7	6.40	5.59	6.40	4.66	6.40	4.14	6.40	3.62	6.40	3.24	6.40	2.85	6.40	2.41
		12	7.49	6.47	7.20	5.73	7.20	4.89	7.20	4.05	7.20	3.59	7.20	3.09	7.20	2.56
		15	7.89	7.14	7.72	6.16	7.72	5.23	7.72	4.31	7.72	3.79	7.72	3.25	7.72	2.66
		20	8.55	8.01	8.12	6.72	8.12	5.66	8.12	4.59	8.12	4.04	8.12	3.45	8.12	2.81
		-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-10	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-
		-7	5.03	3.44	4.61	2.86	4.40	2.52	4.19	2.18	4.00	1.96	3.80	1.73	-	-
	Min	2	4.88	4.45	3.96	3.66	3.77	3.30	3.58	2.95	3.41	2.61	3.24	2.25	-	-
		7	6.02	5.55	3.81	4.52	3.58	3.98	3.34	3.44	3.13	3.02	2.92	2.56	-	-
		12	7.49	6.47	2.83	5.44	2.58	4.49	2.33	3.53	2.13	3.02	1.93	2.46	-	-
		15	7.89	7.14	3.09	6.06	2.82	4.98	2.54	3.91	2.33	3.33	2.11	2.69	-	-
		20	8.55	8.01	6.58	7.08	6.17	5.95	5.75	4.83	5.43	4.22	5.10	3.57	-	-
		20	0.55	0.01	0.50	7.00	0.17	5.55	3.73	4.03	3.43	4.22	5.10	3.31		

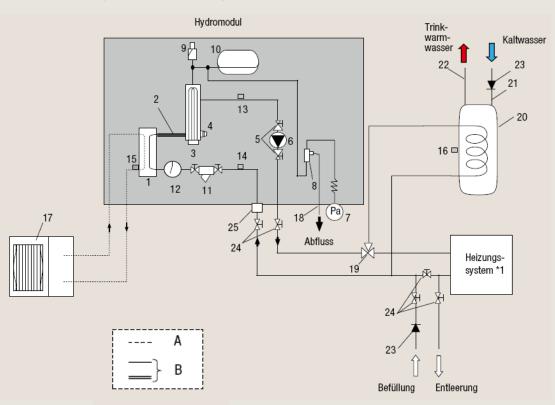


Eingangssignale:

TB142		Funktion	OFF/AUS	ON/EIN	Hinweis		
1-2	(IN1)	Erzwungenes Verdichter-AUS	Normal	Erzwungenes Verdichter-AUS			
3-4	(IN2)	Betriebsart fixieren	Kühlen		Nur verfügbar, wenn SW2-1, SW2-2 ON/EIN geschaltet ist.		

Ausgangssignale:

TB141			Ausgangssignal	OFF/AUS	ON/EIN		
1-2	(OUT1)	X1	Betriebssignal	AUS	EIN		
3-4	(OUT2)	X2	Störungsmeldung	Normal	Störung		
5-6	(OUT3)	Х3	Verdichterbetrieb	AUS (Verdichter ist AUS)	EIN	(Verdichter arbeitet)	
7-8	(OUT4)	X4	Abtaubetrieb	AUS	EIN	(Abtaubetrieb läuft)	
9-10	(OUT5)	X5	Betriebsart: Kühlen	AUS	EIN	(Kühlbetrieb läuft)	
11-12	(OUT6)	X6	Betriebsart: Heizen	AUS	EIN	(Heizbetrieb läuft)	
13-14	(OUT7)	_	_	_	_		

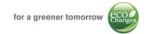

Systemgestaltung

Systemgestaltung (Beispiel):

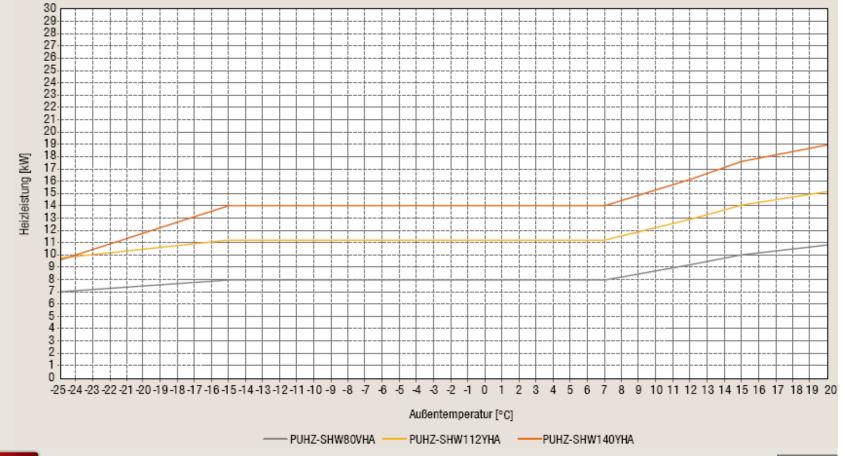


- 1. Plattenwärmetauscher
- 2. Flexibler Schlauch
- 3. Elektroheizstab 1,2
- 4. Entleerungshahn (Elektroheizstab)
- 5. Pumpenabsperrventil
- 6. Primärpumpe
- 7. Manometer
- 8. Überdruckventil
- 9. Automatischer Entlüfter
- 10. Ausdehnungsgefäß
- 11. Schmutzfänger
- 12. Strömungswächter
- 13. Temperaturfühler Vorlauf
- 14. Temperaturfühler Rücklauf
- 15. Temperaturfühler KM TH2
- 16. Temperaturfühler Trinkwasser
- 17. Außengerät
- 18. Abflussrohr (bauseitig)
- 19. 3-Wege-Umschaltventil
- 20. Trinkwarmwasserspeicher
- 21. Kaltwasser
- 22. Warmwasser
- 23. Rückflussverhinderer
- 24. Absperrventil
- 25. Magnetfilter wird empfohlen (bauseitig)
- 26. Schmutzfänger (bauseitig)

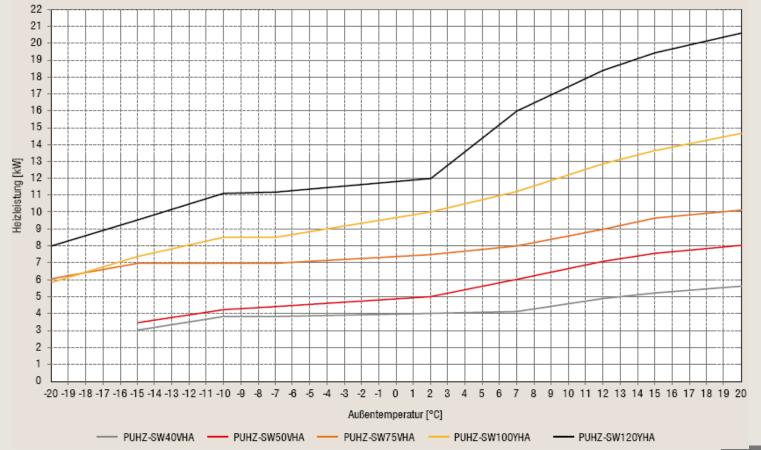
Systemgestaltung (Empfohlene Mindestvolumenströme)

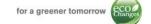

Fließgeschwindigkeit im Primärkreislauf					
Außengerät		Wasser-Volumenstrom [I/min]			
Monoblock	PUHZ-W50	7,1 ¹⁾ – 14,3			
	PUHZ-W85	10,0 - 25,8			
	PUHZ-HW112	14,4 - 27,7			
	PUHZ-HW140	17,9 – 27,7			
Split	PUHZ-SW40	7,1 – 11,8			
	PUHZ-SW50	7,1 – 17,2			
	PUHZ-SW75	10,2 - 22,9			
	PUHZ-SW100	14,4 - 27,7			
	PUHZ-SW120	20,1 - 27,7			
	PUHZ-SHW80	10,2 - 22,9			
	PUHZ-SHW112	14,4 - 27,7			
	PUHZ-SHW140	17,9 - 27,72			

¹ Falls der Volumenstrom von 7,1 Vmin unterschritten wird, löst der Strömungswächter in Speichermodul und Hydromodul aus.


Die Strömungsgeschwindigkeit in den Rohrleitungen muss innerhalb bestimmter, durch das Material vorgegebener, Grenzen gehalten werden, um Erosionskorrosion und übermäßige Geräuschentwicklung zu vermeiden (z. B. Kupferrohr: max. 1,5 m/s).

Nominale Heizleistung PUHZ-SHW (Vorlauftemperatur 35-60 °C)





Nominale Heizleistung PUHZ-SW (Vorlauftemperatur 35–60°C)

GEMEINSAM MARKT MACHEN

Vielen Dank für Ihre Aufmerksamkeit.

Steffen Bauknecht
OEM & Key Account Heating Business

Mitsubishi Electric Europe B.V.

Living Environment Systeme Gothaer Straße 8 40880 Ratingen

Tel. +49 (0) 21 02 / 4 86 – 9711 Fax +49 (0) 21 02 / 4 86 – 666 9711

steffen.bauknecht@meg.mee.com

www.mitsubishi-les.de